Industry Resources

Empowering Telecom Providers through a Ubiquitous Edge Platform

Monday 2 November 2020 | 08:29 CET | Advertorial | provided by ZTE

With 5G rolling out across the globe, there's been substantial attention showered on edge computing as a crucial enabler for specific capabilities such as ultra-reliable low-latency communication (URLLC) support. Edge and 5G have become synonymous even though carrier networks had already employed edge computing before 5G rollouts. Under 5G, though, the edge, or "multi-access edge computing" (MEC), is much more expansive and will become a critical capability for both fixed and mobile carriers.

There is a continuum for the edge, from public cloud edges provided by hyperscale cloud providers, including Amazon, Microsoft, Google, Baidu, Alibaba, and Tencent, to on-premises edge stacks at enterprises (or even in consumer homes). Analyst estimates of how much compute will be performed at the edge in the next 5 years varies widely, from 50% to 75%. Regardless, carriers need to develop their MEC strategies to service the upcoming edge computing market.

In this series of two blog posts, we'll explore an approach that involves building a pervasive MEC platform that addresses edge computing needs from customer premises to regional telco data centers. We'll start by describing why such a platform is needed and what components are needed for this platform. In our next post, we'll examine the benefits of such a platform and how carriers can leverage it as part of a unique MEC strategy.

The ubiquitous MEC platform

Regardless of whether carriers choose to pursue their MEC strategy on their own or involve partners, most carrier MEC platforms will include a hardware component, a software infrastructure component, and a management and orchestration solution. Carriers may pick their partners from a rich edge ecosystem: virtualization and container platform providers, network equipment providers, system integrators or hyper-scale cloud providers.

Further, different use cases will demand that MEC capabilities be present at different locations, providing different latency options and facing different physical and environmental challenges. Just as the edge is a continuum from on-premises to the regional data centers, the carrier MEC platform should also span the spectrum and be equally comprehensive.

In mobile networks, MEC platforms will show up first at aggregation points like mobile switching centers (MSCs). Subsequently, MEC options may include cell-site towers and street-level cabinets aggregating mmWave small cells. Especially as virtualized RAN gains momentum, MEC platforms that can run the disaggregated RU (RAN unit), DU (distributed unit), and CU (centralized unit) will spread towards the radio edge.

For wireline networks, MEC platforms are showing up in next-generation central offices (COs) or at cable headends at multi-service operators (MSOs). These locations provide an opportunity for carriers to run edge workloads with proximity to both enterprise and consumer customers.

In addition to carrier-managed premises, enterprises may seek edge solutions from their service providers as well. In these situations, enterprises will demand an option for an on-premises edge. This edge will take the form of either MEC capabilities on CPE (or uCPE) or additional MEC servers installed at customer premises.

The role of network equipment providers (NEPs) in enabling ubiquitous MEC

Given the requirement for a pervasive MEC environment across multiple locations, there is an opportunity for NEPs who have a rich portfolio of solutions to step up and offer a ubiquitous embedded platform across their range of offerings. Platforms can range from wireline systems like BBU or BRAS (or even the OLTs) and end-customer platforms like uCPEs. For wireless deployments, telcos will want MEC offerings that they can use in MSCs, as well as hardened systems deployable at cell sites and in street-level cabinets. To be comprehensive, such a system would also need to support white-box servers that telcos can deploy in any data center or mini data center location, including at customer premises.

Compared to a piecemeal MEC approach that carriers are trying to put together today, ranging from partnering with SIs to picking a subset of solutions from NEPs to working with hyperscalers in select locations, a more uniform, consistent platform approach might be an appealing alternative.

For a NEP to execute this strategy, a uniform infrastructure layer (historically labeled the NFVI and VIM under ETSI NFV) would need to be provided across all these instantiations and include orchestration and management to provision, deploy and manage the lifecycle of applications across multiple locations. Since edge workloads are likely to be varied, the platform will need to support NFV-style VNFs to more modern CNFs. This means there will be support for bare metal platforms to VMs to containers and potentially serverless in the future.

Importance of a software-centric cloud-like approach

The other challenge for NEPs looking to build such a unified platform is ensuring strong software and integration capabilities. Hyperscale cloud providers have built developer-friendly ecosystems, and software stacks focused on self-service. Hyperscalers empower the end-user to build, automate, and scale application deployment, often through integration with platform APIs. Carriers that want to compete or even partner with hyperscalers will need platforms that provide similar API-centricity and self-service capabilities.

Beyond APIs and self-service edge platform functionality, another key element to success is a cloud-based management platform, complete with cross-domain orchestration and built-in monitoring and telemetry features.

For some NEPs this will be a new challenge, given that they've historically focused on developing appliance-based solutions in siloed divisions: access routing versus transport solutions BUs, mobile division versus optical division versus wireline division. However, a NEP that can envision, design and develop a uniform platform approach for MEC workloads can meet today's pressing carrier needs. Ultimately, this platform can fulfill end-user applications requirements by providing MEC across multiple locations to execute different workloads with different latency needs.

In our next blog, we'll discuss the benefits of such a platform and the use cases that this platform can uniquely meet. We'll explore two MEC customer examples at China Telecom and China Mobile where ZTE, a leading NEP (and sponsor of this blog), was able to demonstrate the value of their ubiquitous ZTE Common Edge MEC platform. We'll contemplate how a carrier-centric platform could enable negotiations and partnerships with SIs and hyperscalers from a position of strength. Stay tuned for the second part of the blog!

About the author

Roy Chua is founder and principal at AvidThink, an independent research and advisory service formed in 2018 out of SDxCentral's research arm. Roy was previously co-founder at SDxCentral where he ran both the research and product teams. Roy was formerly a management consultant working with both Fortune 500 and startup technology companies on go-to-market and product consulting. As an early proponent of the software-defined infrastructure movement, Roy is a frequent speaker at events in the telco and cloud space and a regular contributor to leading technology publications. A graduate of UC Berkeley's electrical engineering and computer science program and MIT's Sloan School of Business, Chua has 20+ years of experience in telco and enterprise cloud computing, networking and security, including founding several Silicon Valley startups.

Sponsor Details

Name    ZTE
Contact    http://www.zte.com.cn/global

Free Headlines in your E-mail

Every day we send out a free e-mail with the most important headlines of the last 24 hours.

Subscribe now

Categories: General
Companies: Alibaba / Amazon / Baidu / China Telecom / CU / Du / ETSI / Google / Microsoft / SIS / Tencent / ZTE
Countries: World
::: add a comment
This article is part of dossier


Add comment

Please login or register to leave a comment.

We welcome comments that add value to the discussion. We attempt to block comments that use offensive language or appear to be spam, and our editors frequently review the comments to ensure they are appropriate. If you see a comment that you believe is inappropriate to the discussion, you can bring it to our attention by using the report abuse links. As the comments are written and submitted by visitors of the Telecompaper website, they in no way represent the opinion of Telecompaper.


Michael Song, Vice President of ZTE: Use "Fiber" to Obtain an Edge, Jointly Move towards All-fiber Connected World

Published 28 Jun 2021 13:20 CET | World
ZTE, a major international provider of telecommunications, enterprise and consumer technology solutions for Mobile Internet, ...

ZTE NodeEngine Solution, Helps Small and Medium Enterprise to Embrace 5G Industry Transformation

Published 26 May 2021 13:45 CET | World
Industrial private network has become one of the hottest applications of 5G technology, as it enables the kinds of latency, ...

Cui Li, Chief Development Officer of ZTE: Successful 5G applications must create differentiated value

Published 26 May 2021 13:37 CET | World
On May 12, Cui Li, Chief Development Officer of ZTE Corporation, attended the WISE2021 Leaders Conference, and shared her views ...

ZTE Precise RAN solution Creating Value for Vertical Industry

Published 06 Mar 2021 08:00 CET | World
At present, a new round of technological revolution and industrial transformation are emerging around the world. The new ...

AT&T deploys disaggregated open routing platform for edge applications

Published 17 Nov 2020 13:34 CET | United States
AT&T announced it has deployed an open disaggregated IP edge routing platform in its production environment with support from ...

ETSI releases first VNF management specs

Published 17 Nov 2020 11:11 CET | World
The European Telecoms Standards Institute (ETSI) has unveiled its first specification enabling containerised VNFs to be managed ...

ZTE drives mobile network energy savings with its new innovation PowerPilot

Published 17 Sep 2020 12:18 CET | World
5G technology is revolutionising the mobile industry, but its realization brings many challenges to the mobile operators. Energy ...

Drei Austria, ZTE and IoT40 Jointly Develop 5G Bee-o-Meter for Biotech

Published 11 May 2020 09:02 CET | World
Along with the rapid development of the global economy, climatic and environmental problems are becoming increasingly severe, ...

ZTE, Together with China Mobile and Xinfengming Group, Built the First 5G Smart Textile Workshop in the Industry

Published 07 Apr 2020 11:00 CET | World
The global chemical fiber industry has entered a key digital transformation period. The current challenges facing the chemical ...

Telecom Cloud Network Helps Operators Create a New Future in 5G Era

Published 12 Mar 2020 11:35 CET | World
The year 2020 will witness large-scale commercial use of 5G and constantly emerging new 5G services. New requirements including ...

Analysis of Small Capacity PON OLT Application Scenarios

Published 27 Feb 2020 12:00 CET | World
With the rapid development and large-scale deployment of FTTH, the pace of "optical advancement and copper retrogression" and ...

Smart Media Terminals Revitalize TV Ecosystem in 5G Era

Published 24 Feb 2020 12:00 CET | World
With 5G fully commercialized in China in 2019, 5G subscribers are growing at an explosive rate. By the end of 2019, 62 operators ...

Case study: Indonesia Telkom and ZTE join forces to explore

Published 24 Nov 2016 11:17 CET | World
Sharing its success with all attendees at the Big Video Summit at Broadband World Forum last month, Indonesia Telkom showcased ...

Calendar   /   Industry Events

30 Jul Proximus Q2 2021
30 Jul NEC fiscal Q1
30 Jul Charter Communications Q2 2021
30 Jul Shentel Q2 2021
02 Aug DSP Group Q2 2021
02 Aug ON Semiconductor Q2
02 Aug DZS Q2
02 Aug Harmonic Q2
02 Aug SBA Communications Q2
02 Aug NXP Semiconductors Q2
02 Aug Arista Networks Q2
02 Aug Ceragon Networks Q2
03 Aug Bredband2 Q2 2021
03 Aug RingCentral Q2 2021
03 Aug Sequans Q2 2021
03 Aug Akamai Technologies Q2 2021
03 Aug Infinera Q3 2021
03 Aug Alibaba Q2 2021
03 Aug NeoPhotonics Q2 2021
04 Aug Aferian interim results
04 Aug Liberty Latin America Q2 2021
04 Aug Smith Micro Q2 2021
04 Aug Inseego Q2 2021
04 Aug Qorvo fiscal Q1
04 Aug Roku Q2 2021
04 Aug Digi International fiscal Q3
04 Aug EA fiscal Q1
04 Aug Intred Q2 2021
04 Aug Softbank fiscal Q1
04 Aug Lumen Technologies Q2
::: More Calendar Items